CS青雀的巢

心平气和,不起执念。

【Python】AttributeError: 'module' object has no attribute 'stats'

代码: import scipy h, p = scipy.stats.randksum(A, B) 报错: AttributeError: 'module' object has no attribute 'stats' 解决: Scipy, 就像许多其他很大的包一样,不能直接导入...

2019-08-19 10:23:02

阅读数 275

评论数 0

【算法分析】多个对比算法的统计检验方法

一、几种检验方法 先说结论:方差分析(或者用Kruskal Wallis)、秩和检验、Holm's method一定要做。 第一个用于确定所有算法有显著差异,第二个生成p-value用于对比,最后一个用于矫正临界值alpha。 如此对比结果才有说服力。 (1)方差分析(Analysis O...

2019-08-15 15:58:14

阅读数 123

评论数 2

【计算视觉】理解图像中基本概念:色调、色相、饱和度、对比度、亮度

理解图像中基本概念:色调、色相、饱和度、对比度、亮度 对比度: 对比度指不同颜色之间的差别。对比度越大,不同颜色之间的反差越大,即所谓黑白分明,对比度过大,图像就会显得很刺眼。对比度越小,不同颜色之间的反差就越小。 亮度: 亮度指照射在景物或图像上光线的明暗程度。图像亮度增加时,就会显得耀...

2019-08-09 16:14:33

阅读数 140

评论数 0

【机器学习】Stacking方法详解

集成学习方法主要分成三种:bagging,boosting 和 Stacking。这里主要介绍Stacking。 stacking严格来说并不是一种算法,而是精美而又复杂的,对模型集成的一种策略。 首先来看一张图。 1、首先我们会得到两组数据:训练集和测试集。将训练集分成5份:train...

2019-08-08 11:21:10

阅读数 118

评论数 0

【机器学习】三招提升数据不平衡模型的性能(附python代码)

对于深度学习而言,数据集非常重要,但在实际项目中,或多或少会碰见数据不平衡问题。什么是数据不平衡呢?举例来说,现在有一个任务是判断西瓜是否成熟,这是一个二分类问题——西瓜是生的还是熟的,该任务的数据集由两部分数据组成,成熟西瓜与生西瓜,假设生西瓜的样本数量远远大于成熟西瓜样本的数量,针对这样的数据...

2019-08-06 12:21:36

阅读数 39

评论数 0

【机器学习】sklearn-Adaboost调参

AdaBoostClassifier默认分类器为决策树: base_estimator:object, optional (default=None) The base estimator from which the boosted ensemble is built. Support f...

2019-08-06 12:14:44

阅读数 62

评论数 0

【机器学习】sklearn分类器调参-RandomizedSearchCV

1. 官方说明文档:sklearn.model_selection.RandomizedSearchCV 2. 指定评估指标scoring:The scoring parameter: defining model evaluation rules 3. 指标中F1分数的一些解释:sklear...

2019-08-06 11:16:38

阅读数 32

评论数 0

【机器学习】sklearn-GBDT调参-GradientBoostingClassifier

 在梯度提升树(GBDT)原理小结中,我们对GBDT的原理做了总结,本文我们就从scikit-learn里GBDT的类库使用方法作一个总结,主要会关注调参中的一些要点。 1.scikit-learn GBDT类库概述     在sacikit-learn中,GradientBoostingCl...

2019-08-06 11:03:38

阅读数 95

评论数 0

【机器学习】sklearn-决策树调参-DecisionTreeClassifier

sklearn中决策树算法参数共有13个,如下: classsklearn.tree.DecisionTreeClassifier(criterion=’gini’,splitter=’best’,max_depth=None,min_samples_split=2,min_samples_le...

2019-08-06 10:46:38

阅读数 19

评论数 0

【机器学习】sklearn-SVM调参

SVM 调参策略 以下内容摘自网络CSDN: SVM 怎样能得到好的结果 1. 对数据做归一化(simple scaling) 2. 应用 RBF kernel 3. 用cross-validation和grid-search 得到最优的c和g 4. 用得到的最优c和g训练训练数据 5. 测试...

2019-08-06 10:36:03

阅读数 34

评论数 0

【机器学习】sklearn-LR调参-Logistic Regression

sklearn中LogisticRegression的API如下,官方文档:http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html#sklearn.linear_mode...

2019-08-05 21:22:32

阅读数 18

评论数 0

提示
确定要删除当前文章?
取消 删除