CS青雀的巢

心平气和,不起执念。

算法:实现链表存储的回文字符串判断

题目:如何判断一个单链表结构的字符串是否是回文字符串。例如,“123454321”,返回“yes”;“12345”,返回“false” 可执行代码:isPalindrome.cpp #include #include #include using namespace std; ...

2016-03-31 15:58:46

阅读数 506

评论数 0

算法:备忘

关于海量数据处理的各种常用数据结构浅谈 http://www.cnblogs.com/dong008259/archive/2012/02/17/2355551.html 知乎精贴:https://www.zhihu.com/question/35485418 KMP原理  http://m....

2016-03-30 14:47:25

阅读数 463

评论数 0

算法:经典leetcode算法题解

1. Patching Array 补丁数组(考虑ing) 原题描述:https://leetcode.com/problems/patching-array/ 给定一个有序正整数数组nums以及一个整数n,向数组中添加/补充一些元素,使其“部分元素和”可以组成范围[1, n]内的所有数字。返...

2016-03-30 13:50:16

阅读数 1662

评论数 0

算法:动态规划经典题目

做一个简单整理与汇总。详情见给出的链接。 算法之美:动态规划 1. 最大子数组和问题——O(N) 关键思路:考虑数组的第一个元素,以及最大的一段数组(A[i], ..., A[j]),和A[0]的关系,有一下几种情况: (1)当0 = i = j 时,元素A[0]本身构成和最大的一段; ...

2016-03-29 16:00:21

阅读数 3860

评论数 0

机器学习:特征工程

特征选择直接影响模型灵活性、性能及是否简洁。好特征的灵活性在于它允许你选择不复杂的模型,同时运行速度也更快,也更容易理解和维护。 特征选择 四个过程:产生过程,评价函数,停止准则,验证过程。 目的:过滤特征集合中不重要特征,挑选一组最具统计意义的特征子集,从而达到降维的效果。 选择标准...

2016-03-27 22:16:41

阅读数 2409

评论数 0

机器学习:核函数的一个小题目

题目:给一百万个三角形,再给一个点,判断在不在某个三角形内。 解法1:RTree 解法2:核函数映射。使得二维空间线性不可分的情况变为三维或四维空间线性可分的。 --------------------------------------------------------------------...

2016-03-27 11:50:30

阅读数 6283

评论数 0

机器学习:梯度Boost决策树

Gradient Boost Decision Tree GBDT是一个应用很广泛的算法,可以用来做分类、回归。在很多的数据上都有不错的效果。 又称作:MART(Multiple Additive Regression Tree),GBRT(Gradient Boost Regression ...

2016-03-26 21:54:32

阅读数 1414

评论数 0

机器学习:多分类的logistic回归

Multi-Class Logistic(多分类的Logistic问题) 它适用于那些类别数大于2的分类问题,并且在分类结果中,样本x不是一定只属于某一个类可以得到样本x分别属于多个类的概率(也可以说样本x的估计y符合某一个几何分布),这实际上是属于Generalized Linear Model...

2016-03-26 21:41:50

阅读数 14995

评论数 0

机器学习:决策树之随机森林

个人理解: 决策树的随机森林本质上是一种bagging方法,是通过组合一系列弱分类器得到强分类器的的过程。随后分4步: (1)随机采样 随机多次地从原数据集中选择N个样本点作为决策树的训练样本。 对于行采样,采用有放回的方式,也就是在采样得到的样本集合中,可能有重复的样本。 假设输入样本为N个,那...

2016-03-26 21:27:11

阅读数 1070

评论数 0

机器学习:HMM隐马尔可夫模型用于中文分词

1. 定义 隐马尔可夫模型(Hidden Markov Model,HMM)是统计模型,它用来描述一个含有隐含未知参数的马尔可夫过程。它的状态不能直接观察到,但能通过观测向量序列观察到,每个观测向量都是通过某些概率密度分布表现为各种状态,每一个观测向量是由一个具有相应概率密度分布的状态序列产生。...

2016-03-26 21:08:43

阅读数 11601

评论数 2

笔试题:数据库 (2)

1. 数据库的常见范式 目前关系数据库有六种范式:第一范式(1NF)、第二范式(2NF)、第三范式(3NF)、巴斯-科德范式(BCNF)、第四范式(4NF)和第五范式(5NF,还又称完美范式)。 在第一范式的基础上进一步满足更多规范要求的称为第二范式(2NF),其余范式以次类推。一般说来,数据...

2016-03-23 10:25:55

阅读数 1831

评论数 0

桌面点击:右键-显示设置,提示"该文件没有与之关联的程序来执行该操作"

解决方法1 右击是我的电脑 点击管理 显示 该文件没有与之关联的文件来操作 ????? 打开电脑左下角“开始”菜单,找到【运行】选项,点击打开; 在弹出的运行对话框输入 regedit 命令,点击确定进入注册表编辑器界面; 进入注册表界面,点击上方【编辑】选项,在弹出的菜单栏选择【查找】;...

2016-03-21 20:39:48

阅读数 22475

评论数 4

【Python】收集python编码过程中碰到的坑

【最新更新】 Linux环境下的路径一定要使用斜杠“/”而不要使用反斜杠“\”。否则识别不出来。 >>> os.path.exists(r"csv2\appl") False >>>...

2016-03-21 16:06:35

阅读数 2053

评论数 2

机器学习:EM算法

1. 定义 EM(Expectation Maximization), 期望极大算法,是一种从不完全数据或有数据丢失的数据集(存在隐含变量)中求解概率模型参数的最大似然估计方法。用户含有隐变量的的概率模型参数的极大似然估计,或称极大后验概率估计法。 EM应用:高斯混合模型。 EM推广:GEM算法。...

2016-03-20 18:55:36

阅读数 683

评论数 0

机器学习:半监督学习

http://blog.csdn.net/yhdzw/article/details/22733371

2016-03-19 21:57:59

阅读数 953

评论数 0

机器学习:线性判别分析LDA

定义:线性判别式分析(Linear discriminant analysis),又称为Fisher线性判别(Fisher linear discriminant)。 原理:将带上标签的数据(点),通过投影的方法,投影到维度更低的空间中,使得投影后的点,会形成按类别区分,一簇一簇的情况,相同类别...

2016-03-19 21:54:26

阅读数 752

评论数 0

机器学习:启发式算法

启发式算法(heuristic algorithm):相对于最优化算法提出的。 一个问题的最优算法求得该问题每个实例的最优解。启发式算法可以这样定义:一个基于直观或经验构造的算法,在可接受的花费(指计算时间和空间)下给出待解决组合优化问题每一个实例的一个可行解,该可行解与最优解的偏离程度一般不能被...

2016-03-19 20:17:46

阅读数 4894

评论数 0

深度学习:神经网络

http://tech.sina.com.cn/i/2016-02-23/doc-ifxprucu3124795.shtml

2016-03-19 10:49:29

阅读数 2292

评论数 0

机器学习:生成模型和判别模型

1 生成模型和判别模型的定义 对o和s进行统计建模,通常有两种方式: (1)判别模型 基本思想:有限样本条件下建立判别函数p(o|s),不考虑样本的产生模型,直接研究预测模型p(s|o),即判别模型:P(s|o)= P(o|s)P(s)/ P(o) 典型判别模型:k近邻,决策树,lo...

2016-03-18 21:34:26

阅读数 3807

评论数 0

笔试题:计算机网络 (1)

1. 应用程序PING 发出的是什么报文() A.  TCP 请求报文 B.  TCP 应答报文 C. ICMP 请求报文 D. ICMP 应答报文 网络报文 应用层:RIP、OSIP、FTP、HTTP、SMTP(简单邮件传送协议) 运输层:TCP、UDP 网际层:IP、ARP(根据地址获取物理地...

2016-03-17 21:40:50

阅读数 1575

评论数 0

提示
确定要删除当前文章?
取消 删除