自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

CS青雀的巢

心平气和,不起执念。

原创 【Python】收集python编码过程中碰到的坑

【最新更新】 Linux环境下的路径一定要使用斜杠“/”而不要使用反斜杠“\”。否则识别不出来。 >>> os.path.exists(r"csv2\appl") False >>> os.path.exists(r"c...

2016-03-21 16:06:35

阅读数 2276

评论数 2

原创 算法:实现链表存储的回文字符串判断

题目:如何判断一个单链表结构的字符串是否是回文字符串。例如,“123454321”,返回“yes”;“12345”,返回“false” 可执行代码:isPalindrome.cpp #include #include #include using namespace std; ...

2016-03-31 15:58:46

阅读数 538

评论数 0

原创 算法:备忘

关于海量数据处理的各种常用数据结构浅谈 http://www.cnblogs.com/dong008259/archive/2012/02/17/2355551.html 知乎精贴:https://www.zhihu.com/question/35485418 KMP原理  http://m....

2016-03-30 14:47:25

阅读数 478

评论数 0

原创 算法:经典leetcode算法题解

1. Patching Array 补丁数组(考虑ing) 原题描述:https://leetcode.com/problems/patching-array/ 给定一个有序正整数数组nums以及一个整数n,向数组中添加/补充一些元素,使其“部分元素和”可以组成范围[1, n]内的所有数字。返...

2016-03-30 13:50:16

阅读数 1721

评论数 0

原创 算法:动态规划经典题目

做一个简单整理与汇总。详情见给出的链接。 算法之美:动态规划 1. 最大子数组和问题——O(N) 关键思路:考虑数组的第一个元素,以及最大的一段数组(A[i], ..., A[j]),和A[0]的关系,有一下几种情况: (1)当0 = i = j 时,元素A[0]本身构成和最大的一段; ...

2016-03-29 16:00:21

阅读数 4145

评论数 0

原创 机器学习:特征工程

特征选择直接影响模型灵活性、性能及是否简洁。好特征的灵活性在于它允许你选择不复杂的模型,同时运行速度也更快,也更容易理解和维护。 特征选择 四个过程:产生过程,评价函数,停止准则,验证过程。 目的:过滤特征集合中不重要特征,挑选一组最具统计意义的特征子集,从而达到降维的效果。 选择标准...

2016-03-27 22:16:41

阅读数 2492

评论数 0

原创 机器学习:核函数的一个小题目

题目:给一百万个三角形,再给一个点,判断在不在某个三角形内。 解法1:RTree 解法2:核函数映射。使得二维空间线性不可分的情况变为三维或四维空间线性可分的。 --------------------------------------------------------------------...

2016-03-27 11:50:30

阅读数 6523

评论数 0

转载 机器学习:梯度Boost决策树

Gradient Boost Decision Tree GBDT是一个应用很广泛的算法,可以用来做分类、回归。在很多的数据上都有不错的效果。 又称作:MART(Multiple Additive Regression Tree),GBRT(Gradient Boost Regression ...

2016-03-26 21:54:32

阅读数 1449

评论数 0

转载 机器学习:多分类的logistic回归

Multi-Class Logistic(多分类的Logistic问题) 它适用于那些类别数大于2的分类问题,并且在分类结果中,样本x不是一定只属于某一个类可以得到样本x分别属于多个类的概率(也可以说样本x的估计y符合某一个几何分布),这实际上是属于Generalized Linear Model...

2016-03-26 21:41:50

阅读数 16393

评论数 0

原创 机器学习:决策树之随机森林

个人理解: 决策树的随机森林本质上是一种bagging方法,是通过组合一系列弱分类器得到强分类器的的过程。随后分4步: (1)随机采样 随机多次地从原数据集中选择N个样本点作为决策树的训练样本。 对于行采样,采用有放回的方式,也就是在采样得到的样本集合中,可能有重复的样本。 假设输入样本为N个,那...

2016-03-26 21:27:11

阅读数 1099

评论数 0

原创 机器学习:HMM隐马尔可夫模型用于中文分词

1. 定义 隐马尔可夫模型(Hidden Markov Model,HMM)是统计模型,它用来描述一个含有隐含未知参数的马尔可夫过程。它的状态不能直接观察到,但能通过观测向量序列观察到,每个观测向量都是通过某些概率密度分布表现为各种状态,每一个观测向量是由一个具有相应概率密度分布的状态序列产生。...

2016-03-26 21:08:43

阅读数 12207

评论数 2

原创 笔试题:数据库 (2)

1. 数据库的常见范式 目前关系数据库有六种范式:第一范式(1NF)、第二范式(2NF)、第三范式(3NF)、巴斯-科德范式(BCNF)、第四范式(4NF)和第五范式(5NF,还又称完美范式)。 在第一范式的基础上进一步满足更多规范要求的称为第二范式(2NF),其余范式以次类推。一般说来,数据...

2016-03-23 10:25:55

阅读数 1867

评论数 0

转载 桌面点击:右键-显示设置,提示"该文件没有与之关联的程序来执行该操作"

解决方法1 右击是我的电脑 点击管理 显示 该文件没有与之关联的文件来操作 ????? 打开电脑左下角“开始”菜单,找到【运行】选项,点击打开; 在弹出的运行对话框输入 regedit 命令,点击确定进入注册表编辑器界面; 进入注册表界面,点击上方【编辑】选项,在弹出的菜单栏选择【查找】;...

2016-03-21 20:39:48

阅读数 28265

评论数 5

原创 机器学习:EM算法

1. 定义 EM(Expectation Maximization), 期望极大算法,是一种从不完全数据或有数据丢失的数据集(存在隐含变量)中求解概率模型参数的最大似然估计方法。用户含有隐变量的的概率模型参数的极大似然估计,或称极大后验概率估计法。 EM应用:高斯混合模型。 EM推广:GEM算法。...

2016-03-20 18:55:36

阅读数 708

评论数 0

原创 机器学习:半监督学习

http://blog.csdn.net/yhdzw/article/details/22733371

2016-03-19 21:57:59

阅读数 972

评论数 0

原创 机器学习:线性判别分析LDA

定义:线性判别式分析(Linear discriminant analysis),又称为Fisher线性判别(Fisher linear discriminant)。 原理:将带上标签的数据(点),通过投影的方法,投影到维度更低的空间中,使得投影后的点,会形成按类别区分,一簇一簇的情况,相同类别...

2016-03-19 21:54:26

阅读数 813

评论数 0

原创 机器学习:启发式算法

启发式算法(heuristic algorithm):相对于最优化算法提出的。 一个问题的最优算法求得该问题每个实例的最优解。启发式算法可以这样定义:一个基于直观或经验构造的算法,在可接受的花费(指计算时间和空间)下给出待解决组合优化问题每一个实例的一个可行解,该可行解与最优解的偏离程度一般不能被...

2016-03-19 20:17:46

阅读数 5815

评论数 0

原创 深度学习:神经网络

http://tech.sina.com.cn/i/2016-02-23/doc-ifxprucu3124795.shtml

2016-03-19 10:49:29

阅读数 2340

评论数 0

原创 机器学习:生成模型和判别模型

1 生成模型和判别模型的定义 对o和s进行统计建模,通常有两种方式: (1)判别模型 基本思想:有限样本条件下建立判别函数p(o|s),不考虑样本的产生模型,直接研究预测模型p(s|o),即判别模型:P(s|o)= P(o|s)P(s)/ P(o) 典型判别模型:k近邻,决策树,lo...

2016-03-18 21:34:26

阅读数 3847

评论数 0

原创 笔试题:计算机网络 (1)

1. 应用程序PING 发出的是什么报文() A.  TCP 请求报文 B.  TCP 应答报文 C. ICMP 请求报文 D. ICMP 应答报文 网络报文 应用层:RIP、OSIP、FTP、HTTP、SMTP(简单邮件传送协议) 运输层:TCP、UDP 网际层:IP、ARP(根据地址获取物理地...

2016-03-17 21:40:50

阅读数 1745

评论数 0

原创 笔试题:数据库 (1)

1. 数据库正确执行的四个基本要素是什么? ACID特性:原子性(Atomicity)、一致性(Consistency)、隔离性(Isolation)、持久性(Durability) 2.(B )保存所有的临时表和临时存储过程。 A. master数据库 B. tempdb数据库 C. model...

2016-03-17 21:40:29

阅读数 955

评论数 0

原创 笔试题:操作系统 (1)

1. 死锁的条件 四个必要条件:互斥、请求与保持、非剥夺、循环等待。 三个主要原因:资源不足、资源分配不当、进程推进顺序非法。 两个检测图:资源分配图、进程等待图。 死锁的处理 四个预防方法:申新先释旧、一次请求完、按序申请。依次破坏了死锁的第2、3、4个必要条件。 两个恢复方法:撤销死锁进程(撤...

2016-03-17 21:40:12

阅读数 1640

评论数 0

原创 《剑指offer》:行列有序的二维数组查找()

------------------------------------------------------------------------------------------------------------------------ 题目 在一个二维数组中,每一行都按照从左到右递增的顺序排...

2016-03-17 12:16:27

阅读数 1136

评论数 2

原创 C++:类与对象

----------------------------------------------------------------------------------------------------- C与C++区别: C是一个结构化语言,它的重点在于算法和数据结构。 C程序的设计首要考虑的是...

2016-03-16 11:15:17

阅读数 608

评论数 0

原创 C++:为什么有容器与迭代器

-------------------------------------------------------------------------- 个人理解: vector类似于栈,尾端插入删除。 deque类似于双向栈,头尾插入与删除。 list类似于双链表。 迭代器类似于指针,提供访问容器的...

2016-03-15 17:55:04

阅读数 839

评论数 0

原创 C++:冒号与双冒号用法

1.冒号(:)用法 (1)类名冒号:定义类的继承。 (2)构造函数后面的冒号:分割作用,类给成员变量赋值。 初始化列表,更适用于成员变量的常量const型。 struct _XXX{ _XXX() : y(0xc0) {} }; (3) public:和private:后面的冒号:后面定...

2016-03-15 17:31:25

阅读数 2294

评论数 0

原创 机器学习:线性回归的基本假设

--------------------------------------------------------------------------------------------------------------- 关于线性回归的描述,以下正确的有: A. 基本假设包括随机干扰项是均值为...

2016-03-15 16:33:38

阅读数 4012

评论数 0

原创 机器学习:维度灾难问题

维度灾难问题 维数灾难(英语:curse of dimensionality,又名维度的詛咒),最早由理查德·贝尔曼(Richard E. Bellman)在考虑动态优化问题时首次提出来的术语,用来描述当(数学)空间维度增加时,分析和组织高维空间(通常有成百上千维),因体积指数增加而遇到各种问题...

2016-03-15 10:10:47

阅读数 4544

评论数 0

原创 机器学习:L1与L2正则化项

-------------------------------------------------------------------------------------------- 关于支持向量机SVM,下列说法错误的是()   A. L2正则项,作用是最大化分类间隔,使得分类器拥有更强的泛...

2016-03-15 10:02:43

阅读数 7765

评论数 2

原创 机器学习:不均衡样本情况下的抽样

-----------------------------------------------------------------------------------------------------------------------------------------------------...

2016-03-15 09:44:43

阅读数 8759

评论数 0

原创 机器学习:时间序列模型

--------------------------------------------------------------------------------------------------------------- 下列时间序列模型中,哪一个模型可以较好地拟合波动性的分析和预测? AR模型...

2016-03-14 22:16:40

阅读数 20708

评论数 0

原创 机器学习:文本挖掘之特征选择

---------------------------------------------------------------------------------------------------------------- 下列哪个不属于常用的文本分类的特征选择算法? 卡方检验值 互信息 信息...

2016-03-14 21:47:18

阅读数 3935

评论数 0

原创 机器学习:序列模式挖掘算法

------------------------------------------------------------------------------------------------------------------------ 题目:下面有关序列模式挖掘算法的描述,错误的是?   ...

2016-03-14 21:30:50

阅读数 8098

评论数 1

原创 Linux特点与优势

1. C语言写成,编译之后就是内核。完全开放源码,用户可以定制自己的系统。 2. Linux更容易改动,摸清自己需要什么,下载对应的库,看库文档。 3. Linux在内存管理优势:Windows是只在需要内存时,才为应用程序分配内存;Linux 无论物理内存有多大,都将其充份利用。 4. Linu...

2016-03-14 19:33:44

阅读数 4731

评论数 0

原创 思维导图:线性代数

线性代数——同济大学第四版

2016-03-12 22:10:19

阅读数 7906

评论数 0

原创 思维导图:概率论

浙大版概率论与数理统计的思维导图,主要为了方便记忆主要内容。

2016-03-12 21:25:10

阅读数 10570

评论数 6

原创 C++程序员面试宝典——预处理、counst与sizeof

---------------------------------------------基本原理---------------------------------------------------- 1. C++程序设计三大难点:预处理、counst与sizeof (1)预处理 C++从C语言...

2016-03-11 15:32:06

阅读数 971

评论数 0

原创 《机器学习实战》——数据降维技术

1. PCA降维 2. 奇异值分解

2016-03-10 15:39:47

阅读数 1080

评论数 0

原创 《机器学习实战》——无监督学习

基本原理: 无监督学习中,要划分的类别或者目标变量事先并不存在。摆在面前的是一堆无意义的数据集,要对其进行分组。其中最重要的算法有三个:K均值算法、基于Apriori的关联分析、基于FP-growth的关联分析。 1. K-means(K核算法) 随机确定k个初始点作为质心; 将数据集中每个点分配...

2016-03-09 22:07:55

阅读数 1117

评论数 1

原创 机器学习:监督学习习题

1. SVM和logistic回归分别在什么情况下使用? (1) 两种方法都是常见的分类算法,从目标函数来看,区别在于逻辑回归采用的是logistical loss,svm采用的是hinge loss。 这两个损失函数的目的都是增加对分类影响较大的数据点的权重,减少与分类关系较小的数据点的权重...

2016-03-09 18:35:34

阅读数 1061

评论数 0

提示
确定要删除当前文章?
取消 删除