【复杂网络】复杂网络度的不相关性(Degree-uncorrelated network)标注笔记

 【笔记】

度相关、不相关网络的理解(不一定正确)

社交网络中,你刚注册,系统给你推荐了小明,你关注小明的概率和小明一点关系都没有,纯粹是你为了完成任务随便选了个人关注。因为你关注小明的概率随机,只是由你自己的关注总数(节点出度)决定,和对方的关注数和被关注数无关。这个网络就是度不相关网络。

你已经玩社交网络很久,系统根据你的兴趣给你推荐小明,你关注小明的概率和小明是不是大V有很大关系(假设大V发文内容有吸引力)。因为你关注大V的概率由你的关注总数,和大V的粉丝数共同决定。这个网络就是度相关网络。

同理,换成无向网络,就没有出度相关性和入度相关性的区分,统一称为度相关性。

同配、异配网络

研究表明,真实世界网络中节点之间的连接选择并不是均等的,而是存在明显的偏好.连接偏好导致网络中节点与节点之间的连接存在某种相关性,Newman根据复杂网络节点之间这种连接相关性,提出同配(assortativity)和异配(disassortativity)概念来区分节点之间的这种连接偏好,并利用匹配系数来量化节点之间的连接。

所以,复杂网络节点的异质性,是对节点分布均匀情况的一种度量。节点倾向于连接有相似度的节点,则构成同配网络;高度节点和低度节点也有一定概率连接,则构成异配网络。网络异配程度测量。

 


度的0阶、1阶、2阶分布特性

 

 学习来源:https://wenku.baidu.com/view/945731ffb7360b4c2f3f6486.html

 


以下为两个文献矛盾之处,二者有一个是错误的:因为k’和<k>在分子还是分母的位置明显反了。

来源1:复杂网络基础理论(正确)

来源2:复杂系统与复杂理论(错误)

 

 

 

©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页