【DB】mongodb,redis,hbase 定位与区别

------------------------------------------------------------------------------------------------------

【个人笔记】

我想在本地建立一个数据库,日常存取数据方便。常用语言为Python

MySQL:关系型数据库,可视化好,但是SQL语句不想写,pass;

Redis:Key-Value 数据库,根本没有通过值查询的途径,pass;

MongoDB:面向文档数据库,数据存储的最小单位是文档,可以使用 XML、JSON 或者 JSONB 等多种形式存储,考虑;

HBase:列存储数据库,将数据储存在列族(column family)中,一个列族存储经常被一起查询的相关数据,

但是在模型设计之初,我们根本不可能去预测它的查询方式,而一旦查询方式改变,我们就必须重新设计列族,pass;

------------------------------------------------------------------------------------------------------

1.关于NoSQL

比较赞同楼上的回答NoSQL is Not Only SQL
NoSQL的粗线的背景大概是因为随着数据量的扩大,在一些对数据集的分析中,传统的关系型数据库的计算成本变得很大。NoSQL凭借着它高大上的“易扩展、大数据、高可用、高性能、灵活性”,强势登场。

2.关于NoSQL的种类

3.HBase(列存储)

两大用途:

  • 特别适用于简单数据写入(如“消息类”应用)和海量、结构简单数据的查询(如“详单类”应用)。特别地,适合稀疏表。(个人觉得存个网页内容是极好极好的)
  • 作为MapReduce的后台数据源,以支撑离线分析型应用。

4.MongoDB

  • 是一个介于关系型和非关系型之间的一个产品吧,类SQL语言,支持索引
  • MongoDb在类SQL语句操作方面目前比HBase具备更多一些优势,有二级索引,支持相比于HBase更复杂的集合查找等。
  • BSON的数据结构使得处理文档型数据更为直接。支持复杂的数据结构
  • MongoDb也支持mapreduce,但由于HBase跟Hadoop的结合更为紧密,Mongo在数据分片等mapreduce必须的属性上不如HBase这么直接,需要额外处理。

5.Redis

  • Redis为内存型KV系统,处理的数据量要小于HBase与MongoDB
  • Redis很适合用来做缓存,但除此之外,它实际上还可以在一些“读写分离”的场景下作为“读库”来用,特别是用来存放Hadoop或Spark的分析结果。
  • Redis的读写性能在100,000 ops/s左右,时延一般为10~70微妙左右;而HBase的单机读写性能一般不会超过1,000ops/s,时延则在1~5毫秒之间。
  • Redis的魅力还在于它不像HBase只支持简单的字符串,他还支持集合set,有序集合zset和哈希hash

MongoDB做高性能数据库,Redis做缓存,HBase做大数据分析。MongoDB还无法取代关系型数据库。

网易云官方回答:(www.163yun.com

MongoDB是高性能、无模式的文档型数据库,支持二级索引,非常适合文档化格式的存储及查询。MongoDB的官方定位是通用数据库,确实和MySQL有些像,现在也很流行,但它还是有事务、join等短板,在事务、复杂查询应用下无法取代关系型数据库。

Redis是内存型Key/Value系统,读写性能非常好,支持操作原子性,很适合用来做高速缓存。

HBase存储容量大,一个表可以容纳上亿行、上百万列,可应对超大数据量要求扩展简单的需求。Hadoop的无缝集成,让HBase的数据可靠性和海量数据分析性能(MapReduce)值得期待。

所以说,关系型数据库和NoSQL各有优劣,两者结合,可以覆盖更多的业务场景。

转自:https://www.zhihu.com/question/30219620

附录二:两张图告诉你如何在 SQL、NewSQL、NoSQL 之间进行取舍

图一:Do I Need SQL or Hadoop?

图二:SQL vs. NewSQL vs. NoSQL

转自:https://blog.csdn.net/u010022051/article/details/48542759

 

发布了392 篇原创文章 · 获赞 492 · 访问量 241万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 编程工作室 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览