【Python】Python中的注解“@”

Python3.0之后加入新特性Decorators,以@为标记修饰function和class。有点类似c++的宏和java的注解。Decorators用以修饰约束function和class,分为带参数和不带参数,影响原有输出,例如类静态函数我们要表达的时候需要函数前面加上修饰@staticmethod或@classmethod,为什么这样做呢?下面用简单的例子来看一下,具体内容可以查看:官方解释

不带参数的单一使用

  1. def spamrun(fn):
  2. def sayspam(*args):
  3. print("spam,spam,spam")
  4. fn(*args)
  5. return sayspam
  6. @spamrun
  7. def useful(a,b):
  8. print(a*b)
  9. if __name__ == "__main__"
  10. useful(2,5)

运行结果

  1. spam,spam,spam
  2. 10

函数useful本身应该只是打印10,可是为什么最后的结果是这样的呢,其实我们可以简单的把这个代码理解为

  1. def spamrun(fn):
  2. def sayspam(*args):
  3. print("spam,spam,spam")
  4. fn(*args)
  5. return sayspam
  6. def useful(a,b):
  7. print(a*b)
  8. if __name__ == "__main__"
  9. useful = spamrun(useful)
  10. useful(a,b)

不带参数的多次使用

  1. def spamrun(fn):
  2. def sayspam(*args):
  3. print("spam,spam,spam")
  4. fn(*args)
  5. return sayspam
  6. def spamrun1(fn):
  7. def sayspam1(*args):
  8. print("spam1,spam1,spam1")
  9. fn(*args)
  10. return sayspam1
  11. @spamrun
  12. @spamrun1
  13. def useful(a,b):
  14. print(a*b)
  15. if __name__ == "__main__"
  16. useful(2,5)

运行结果

  1. spam,spam,spam
  2. spam1,spam1,spam1
  3. 10

这个代码理解为

  1. if __name__ == "__main__"
  2. useful = spamrun1(spamrun(useful))
  3. useful(a,b)

带参数的单次使用

  1. def attrs(**kwds):
  2. def decorate(f):
  3. for k in kwds:
  4. setattr(f, k, kwds[k])
  5. return f
  6. return decorate
  7. @attrs(versionadded="2.2",
  8. author="Guido van Rossum")
  9. def mymethod(f):
  10. print(getattr(mymethod,'versionadded',0))
  11. print(getattr(mymethod,'author',0))
  12. print(f)
  13. if __name__ == "__main__"
  14. mymethod(2)

运行结果

  1. 2.2
  2. Guido van Rossum
  3. 2

这个代码理解为

  1. if __name__ == "__main__"
  2. mymethod = attrs(versionadded="2.2",
  3. author="Guido van Rossum).(mymethod)
  4. mymethod(2)

带参数的多次使用

这次我们来看一个比较实际的例子,检查我们函数的输入输出是否符合我们的标准,比如我们希望的输入是(int,(int,float))输出是(int,float),这个例子在官网里有,但是在3.6版本中使用有些问题,这里进行了一些改动,如果要进一步了解可以看下functionTool。

  1. def accepts(*types):
  2. def check_accepts(f):
  3. def new_f(*args, **kwds):
  4. assert len(types) == (len(args) + len(kwds)),
  5. "args cnt %d does not match %d" % (len(args) + len(kwds), len(types))
  6. for (a, t) in zip(args, types):
  7. assert isinstance(a, t),
  8. "arg %r does not match %s" % (a, t)
  9. return f(*args, **kwds)
  10. update_wrapper(new_f, f)
  11. return new_f
  12. return check_accepts
  13. def returns(rtype):
  14. def check_returns(f):
  15. def new_f(*args, **kwds):
  16. result = f(*args, **kwds)
  17. assert isinstance(result, rtype),
  18. "return value %r does not match %s" % (result, rtype)
  19. return result
  20. update_wrapper(new_f, f)
  21. return new_f
  22. return check_returns
  23. @accepts(int, (int, float))
  24. @returns((int, float))
  25. def func(arg1, arg2):
  26. return arg1 * arg2
  27. if __name__ == "__main__"
  28. a = func(1, 'b')
  29. print(a)

这里故意输入了错误的参数,所以运行结果将我们的断言打印了出来

  1. AssertionError: arg 'b' does not match (<class 'int'>, <class 'float'>)

这个代码理解为

  1. if __name__ == "__main__"
  2. func = accepts(int, (int, float)).(accepts((int, float)).(mymethod))
  3. a = func(1, 'b')
  4. print(a)

说到这里,大家不难看出其实我们可以使用Decorators做很多工作,简化代码,使逻辑更清晰等。还有更多的用法等着大家自己去挖掘了,这里只简单的介绍了针对函数的用法,其实还可以针对class使用,具体的大家自己看看官方介绍,结合这篇文档应该就不难理解了。

转自:http://www.jcodecraeer.com/a/chengxusheji/chengxuyuan/2017/0418/7842.html

发布了397 篇原创文章 · 获赞 541 · 访问量 255万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 编程工作室 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览