【Python】numpy数组用dtype=float16初始化的坑

【Python坑系列】

为了节约空间,使用numpy数组时候采用了float16,结果发现精度远远不达标

默认的floar64是最接近原本浮点数的

a = 0.0001 * np.ones(10,np.float16)

a
Out[206]: 
array([ 0.00010002,  0.00010002,  0.00010002,  0.00010002,  0.00010002,
        0.00010002,  0.00010002,  0.00010002,  0.00010002,  0.00010002], dtype=float16)

a = 0.0001 * np.ones(10,np.float32)

a
Out[208]: 
array([  9.99999975e-05,   9.99999975e-05,   9.99999975e-05,
         9.99999975e-05,   9.99999975e-05,   9.99999975e-05,
         9.99999975e-05,   9.99999975e-05,   9.99999975e-05,
         9.99999975e-05], dtype=float32)

a = 0.0001 * np.ones(10,np.float64)

a
Out[210]: 
array([ 0.0001,  0.0001,  0.0001,  0.0001,  0.0001,  0.0001,  0.0001,
        0.0001,  0.0001,  0.0001])

a = 0.9999 * np.ones(10,np.float64)

a
Out[212]: 
array([ 0.9999,  0.9999,  0.9999,  0.9999,  0.9999,  0.9999,  0.9999,
        0.9999,  0.9999,  0.9999])



发布了392 篇原创文章 · 获赞 487 · 访问量 240万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 编程工作室 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览