python函数——根据经纬度计算距离公式的错误及修正

#coding: utf-8
#封装函数
import math
def cal_dis(latitude1, longitude1,latitude2, longitude2):
	latitude1 = (Math.PI/180)*latitude1
	latitude2 = (Math.PI/180)*latitude2
	longitude1 = (Math.PI/180)*longitude1
	longitude2= (Math.PI/180)*longitude2
	#因此AB两点的球面距离为:{arccos[sinb*siny+cosb*cosy*cos(a-x)]}*R
	#地球半径
	global R = 6378.1;
	d =  math.acos(math.sin(latitude1)*math.sin(latitude2)+\
		 math.cos(latitude1)*math.cos(latitude2)*math.cos(longitude2-longitude1))*R
	return d;
	}

实现了根据输入两点经纬度,计算这两点距离的函数,但是在实际操作过程中,出现了报错:

ValueError: math domain error

下面是测试数据,这部分是正确的数据

print cal_dis(39.762146, -104.98248,39.758066, -104.902431)
print cal_dis(39.77455175, -105.01426466666665,39.76241472, -104.90343176000002)
print "横向一个纬度的距离:",cal_dis(39, -104,40, -104)
print "纵向一个经度的距离:",cal_dis(39, -105,39, -104)
print cal_dis(39.772779500000006, -104,39.762146, -104)
下面是会报错的数据集:

print "error"
print cal_dis(-6.174444, 106.829444, -6.174444, 106.82944400000001)
print cal_dis(59.439339, 24.74682, 59.439339, 24.74682)
print cal_dis(59.439339, 24.74682, 59.439339, 24.74682)
print cal_dis(59.439339, 24.74682, 59.439339, 24.74682)
print cal_dis(37.647464, -77.624973, 37.647464, -77.624973)
经过搜索相关文章,最终发现是由于acos(x)中的x越界引起的。

语法

以下是acos()方法的语法:

?
1
acos(x)

注意:此函数是无法直接访问的,所以我们需要导入math模块,然后需要用math的静态对象来调用这个函数。
参数

  •     x -- 这必须是在范围内的数字值-1到1,如果x大于1,则它会产生一个错误。

返回值

此方法返回的X反余弦,以弧度表示。

解决方案:

查看越界代码,使用repr将数字转化为字符串显示、查看

temp = math.sin(latitude1)*math.sin(latitude2)+\
		 math.cos(latitude1)*math.cos(latitude2)*math.cos(longitude2-longitude1)
<pre name="code" class="python">temp=math.sin(latitude1)*math.sin(latitude2)+\
		 math.cos(latitude1)*math.cos(latitude2)*\
		 math.cos(longitude2-longitude1)
	print temp,repr(temp)


发现打印结果是:1.0 1.0000000000000002

也就是实际的acos()函数的自变量是1.0000000000000002, 已经超出1的范围,由于精度问题只显示了1.0

	if temp>1.0:
		print format(temp,".19e")

可看出在科学计数法下的输出

>>1.0000000000000002220e+00

推导公式本身出问题的机率很小,但计算机中的浮点数舍入误差会放大、缩小数据,从而溢出。因此代码改为:

#coding: utf-8
#封装函数
import math
def cal_dis(latitude1, longitude1,latitude2, longitude2):
	latitude1 = (math.pi/180.0)*latitude1
	latitude2 = (math.pi/180.0)*latitude2
	longitude1 = (math.pi/180.0)*longitude1
	longitude2= (math.pi/180.0)*longitude2
	#因此AB两点的球面距离为:{arccos[sina*sinx+cosb*cosx*cos(b-y)]}*R  (a,b,x,y)
	#地球半径
	R = 6378.1
	temp=math.sin(latitude1)*math.sin(latitude2)+\
		 math.cos(latitude1)*math.cos(latitude2)*math.cos(longitude2-longitude1)
	if repr(temp)>1.0:
		 temp = 1.0
	d = math.acos(temp)*R
	return d;	

发布了392 篇原创文章 · 获赞 492 · 访问量 241万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 编程工作室 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览